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Editorial

Reconsidering brain tissue changes as a mechanistic 
focus for early intervention in psychiatry

Lena Palaniyappan, MD, PhD; Niron Sukumar, MD

Following a first episode of psychiatric symptoms, patients 
have a high risk of subsequent episodes of similar or variable 
nature. These subsequent recurrences characterize relapses1,2 
as well as comorbidity3 depending on the nature of the first 
episode. After the first episode of psychosis, more than 50% 
experience a relapse within 3 years, with each relapse further 
increasing the risk of subsequent episodes over time.4 Such 
recurrences are assumed to indicate a temporal progression 
in the underlying illness process.5 The pathobiological mech-
anisms for these recurrences are hitherto unknown. Never-
theless, interrupting these unknown mechanistic processes 
has been the focus of long-term secondary prevention strat
egies after the first episode of serious mental illnesses such as 
schizophrenia,6 depression7 and bipolar disorder.8

Among various psychiatric disorders, secondary preven-
tion (i.e., early intervention) strategies are best established for 
psychotic disorders. The rationale for the adoption of these 
strategies is irrefutable; early intervention in psychosis short-
ens the duration of personal suffering,9 minimizes the psy-
chosocial toxicity of untreated psychosis and promotes occu-
pational achievement.10,11 While the utilitarian argument is 
well established, the mechanistic rationale for early interven-
tion in psychosis is built on targeting the underlying patho-
physiology to arrest illness progression.12 Structural brain ab-
normalities have been one of the most widely investigated 
features in this regard. Untreated illness is considered detri-
mental to brain structure, and early intervention is said to im-
prove outcomes by arresting longitudinal reduction in grey 
matter tissue, termed “neuroprogression.”13 The notion of 
disease modification by thwarting neuroprogression has also 
become the key theme for advocating early intervention in 
other severe mental illnesses such as bipolar disorder,14 de-
pression15 and obsessive–compulsive disorder.16 Despite the 
enthusiastic adoption of the idea of neuroprogression in the 
field of early intervention, several critical questions regarding 
this concept remain unanswered. In this editorial, we present 
an overview of neuroprogression in psychosis and argue for 
an alternative conceptual model for the neuroscience of early 
intervention. What follows is not a critique on the need for 

early intervention, which in our opinion is indisputable for 
every psychiatric disorder.17 Here we evaluate the mechanis-
tic premise that is repeatedly invoked when discussing early 
intervention in psychiatry. While demonstrable brain 
changes are not required for early interventions to be effec-
tive, a fresh neuroscientific framework can accelerate treat-
ment discovery and be impactful to deliver the next genera-
tion of transdiagnostic early intervention.18

Is there a progressive loss of brain tissue in 
psychosis?

A number of longitudinal studies have been conducted now 
across various stages of psychosis. These studies largely concur 
on the occurrence of progressive loss of brain tissue in psycho-
sis at a rate greater than expected from healthy individuals.19–21 
However, these longitudinal changes are spatially constrained, 
temporally limited to the period following the first episode, 
and of modest magnitude.22 Furthermore, subtle progressive 
gain also occurs alongside progressive loss, though this gain is 
not concentrated to selected regions; thus, tissue increases are 
not picked up at the sample level, but are notable in covariance 
analyses.22–24 This phenomenon is clearly demonstrated in a re-
cent cross-sectional study of individual deviations from nor-
mative models of cortical thickness and white matter integrity 
in schizophrenia.25 Whereas 79% of patients show infra-normal 
deviations (i.e., < 5th percentile value of age- and sex-matched 
healthy individuals), 46% show supra-normal deviations (i.e., 
> 95th percentile value) for at least one brain region. Infra-
normal deviations in thickness are more common in medial 
prefrontal, insula and lateral temporal regions (but in only 
15%–20% of patients), whereas supra-normal changes are more 
common in occipital and paracentral regions (affecting 3% of 
patients), indicating distributed changes that lack regional 
specificity.25 Furthermore, in a recent detailed appraisal of this 
issue of grey matter increase using a meta-analytical network 
mapping approach, Mancuso and colleagues26 concluded that 
whenever grey matter reduction occurs in one brain region, 
concurrent grey matter increase occurs in other brain regions 
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across various psychiatric disorders. Interestingly, such grey 
matter changes of opposite polarity occurred in distinct func-
tional networks. In particular, these co-alterations often in-
volved reduced grey matter in the task-negative default-mode 
network (which is often observed to be “deactivated” during 
externally focused tasks in functional MRI studies) while con-
current increase occurred in task-positive subcortical and cog-
nitive control regions.26 Taken together, these findings indicate 
that the phenomenon commonly considered to be neuropro-
gression may instead be a well-coordinated compensatory pro-
cess operating across various psychiatric disorders.

Does neuroprogression indicate an 
unfavourable outcome?

The presence of lower grey matter volume at the outset of the 
first episode, even before treatment initiation, has been 
shown to be predictive of poor subsequent response.27–29 Ad-
ditionally, patients who have a longer duration of active 
symptoms show more longitudinal volume loss than those 
who are in remission.30–32 Despite these reports, a causal rela-
tionship between postonset tissue loss and subsequent cogni-
tive, functional or symptomatic decompensation is weakened 
by several observations. First, there is a notable lack of diag-
nostic specificity for progressive tissue loss. Relapses of vari-
ous nature are associated with greater tissue loss, as reported 
in recurrent depressive disorder,33 alcohol use disorder,34 
bipolar disorder,35 migraine,36 epilepsy37 and chronic pain.38 
While there are likely differences in the affected brain regions 
among these illnesses, progressive tissue loss in these disor-
ders is not suggestive of a decompensating trajectory. 
Second, the association between illness severity and grey 
matter loss is inconsistent. Several studies indicate a lack of 
association between tissue reduction and illness severity (as 
reviewed previously22,39). Some studies even indicate a 
reverse relationship, associating unfavourable outcomes to 
an increase in grey matter as opposed to a decrease.40–42 
Third, patients who are more symptomatic tend to receive 
higher doses of psychotropic medications, specifically anti-
psychotics, which hasten grey matter reduction.43–45 Observa-
tional studies cannot resolve this confound. Hence, we can-
not confidently conclude that neuroprogression is indicative 
of an unfavourable outcome in psychosis.

Does treatment delay worsen neuroprogression?

Many studies that report progressive tissue loss include par-
ticipants who receive clinical care at specially constituted 
early intervention services, indicating that neuroprogression 
occurs despite early psychosocial and medical care.46 While 
experimental reduction of the duration of untreated psychosis 
(DUP) improves functional outcomes,47 observational studies 
relating duration of untreated illness to tissue loss are incon-
clusive.19,21,43,48,49 A systematic review by Anderson and col-
leagues50 examined 43 studies that investigated the associa-
tion between duration of untreated psychosis and brain 
structure (imaged with a variety of modalities). Of these, only 
8 studies showed statistically significant findings and, even 

among the brain regions identified as having significant struc-
tural associations, these findings were inconsistent across 
studies. Observational studies linking DUP to brain changes 
are limited because DUP is a complex variable affected by ser-
vice availability as well as personal and family profiles. In ad-
dition, multiple measurement confounds have been neglected 
in prior studies. In particular, MRI studies have not separated 
cortical thickness, a malleable morphometric feature that is 
sensitive to plastic changes in adult life, from surface area or 
gyrification, which are largely determined during early brain 
development and show much smaller magnitude of changes 
in adult life.51 A recent multimodal imaging study in 
medication-naïve first-episode psychosis reported that longer 
DUP relates to both reduced surface area and increased corti-
cal thickness.52 This contradicts the neuroprogressive hypoth-
esis, which would predict larger reductions in brain features 
that are more malleable in adult life, such as cortical thickness, 
as opposed to features that are more developmentally deter-
mined. Rather than treatment delay causing structural 
changes, these findings are better explained by the fact that 
patients with developmentally determined structural deficits 
are more likely to receive delayed treatment, likely because of 
the insidious onset and the lack of a dramatic drop in func-
tional levels given their premorbid deficits. This idea is sup-
ported by a large body of literature linking the indicators of 
developmental aberrations such as familial loading of illness 
risk,53 poor premorbid adjustment,54–56 early age of onset56 and 
neurologic soft signs57 with longer treatment delay. A pro-
spective assessment of the same cohort, subjected to a 16-
week trial of risperidone, revealed longer DUP to predict 
poorer treatment response.52 While treatment delay dimin-
ishes the probability of favourable response, the relationship 
between these variables is unlikely to be mediated by progres-
sive grey matter reduction. It is likely that the treatments we 
provide do not work well for latecomers,17 who are likely to 
be those with developmental deficits.58,59

Neuroprogression: Illness or treatment effect?

A series of observational studies have implicated anti
psychotics, especially in higher doses, in neuroprogres-
sion.39,44,60 However, in clinical practice, patients who receive 
higher doses of antipsychotics are also often those with 
higher symptom burden and longer illness duration. Untan-
gling the treatment from illness effects have been hitherto 
impossible, but 3 recent studies provide some clarity.

Liu and colleagues61 recruited a rare sample of patients 
with nearly 20 years of untreated schizophrenia from rural 
Western China. When 2 matched groups of treated patients 
(risperidone or clozapine) with a similar duration of illness 
were compared, pronounced grey matter reduction was seen 
in the cohort treated with antipsychotics compared with the 
treatment-naive cohort. The treatment-naive sample did 
exhibit widespread grey matter reduction, but also grey 
matter increases in specific brain regions compared with age-
matched healthy controls. Being a case–control study, the 
temporal association between treatment administration and 
tissue loss cannot be inferred.
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In the Staged Treatment and Acceptability Guidelines in 
Early Psychosis Study (STAGES), Chopra and colleagues62 ran-
domized 62 patients to antipsychotic treatment or placebo, 
while providing psychosocial interventions to both arms. 
Three months after treatment, the medicated group had an in-
crease in pallidal volume (likely related to D2-blockade effect), 
but the placebo group had a reduction in pallidal volume with 
a small effect size difference between the 2 arms. Interestingly, 
at 12 months, there were no differences between the 2 groups. 
Given the ethical constraints of a placebo-controlled study, this 
sample included only patients with short DUP (< 6 mo), only a 
low dose of antipsychotic was used, and patients showing 
poor response were removed from the triple-blind experiment, 
thus affecting generalizability.

In the Study of the Pharmacotherapy of Psychotic Depres-
sion II (STOP-PD II), Voineskos and colleagues63 randomized 
88 patients with psychotic depression who achieved 8-week 
remission from psychosis on sertraline and olanzapine, to 
either discontinue olanzapine (placebo arm) or continue for 
36 weeks. The olanzapine group experienced a significant re-
duction in cortical thickness, but not surface area. In the pla-
cebo arm, relapses were also associated with thickness reduc-
tion, albeit with smaller effect sizes than olanzapine exposure. 
Interestingly, in the olanzapine arm, reduction in thickness 
was more likely in those who sustained remission than in 
those who relapsed. In the olanzapine arm, reductions were 
predominantly in the lateral frontotemporal cortex (pars oper-
cularis and middle temporal region), but regional differences 
in relapse- compared with remission-related thickness reduc-
tion were not examined. Patients in this study had psychotic 
depression and an average age of 55 years. The generalizability 
of this observation to patients with other forms of psychosis, 
who tend to be much younger at presentation, is unclear.

From these reports, we can conclude that a notable portion 
of MRI-based grey matter reduction is antipsychotic related, 
while illness-related reduction also occurs and relates to the 
periods of active symptoms (relapses). Taken together, these 
observations challenge the neuroprogressive interpretation. 
Grey matter reduction occurs in the placebo arm in both ran-
domized controlled trials (RCTs; though only for the first 
3 mo in the data reported by Chopra and colleagues62), con-
sistent with neuroprogression. But grey matter reduction is 
also associated with the administration of demonstrably effi-
cacious treatment in both RCTs as well as in the chronic un-
treated sample reported by Liu and colleagues61; this would 
not be expected if it is the result of a progressive pathophysi-
ology. Given the larger effect size seen in the treatment arm 
of STOP-PD II, one may posit that treatment itself somehow 
hastens neuroprogression despite demonstrating superior 
outcomes. However, this conclusion is contradicted by the 
fact that in the olanzapine arm, reduction in thickness was 
more likely in those who experienced sustained remission 
than in those who relapsed. This is the reverse of what was 
seen in the placebo arm, where thickness reduction was 
shown to be more likely in patients who relapsed. Further-
more, in the STAGES study, 12 months after treatment initia-
tion, there were no notable differences between illness-
related and treatment-related changes. While it is possible 

that the illness and its treatment affect the structure of differ-
ent brain regions, all reductions in cortical thickness, irres
pective of their regional localization, are considered deleteri-
ous under the premise of neuroprogression. If we accept the 
neuroprogressive interpretation, we cannot reconcile the con-
tradiction that treatment-related structural changes appear 
protective, while the illness-related changes appear to be 
deleterious (as observed in STOP-PD II), with both processes 
resulting in similar brain anatomy over a longer period of 
time (as observed in STAGES).

How can we then explain the observation that both the illness 
and its treatment produce a similar change in the presumed 
pathophysiology? We propose that the observed progressive 
structural changes are reflective of physiologic adaptation 
rather than primary pathophysiology, and these compensatory 
efforts are facilitated, not alleviated, by treatment.

Neuroprogression as an adaptive change

When we start considering neuroprogression as an adaptive 
change, a number of paradoxical observations in the field start 
to fall in place. First, when considering long-term trajectories, 
progressive tissue loss does not reflect longitudinal worsening; 
in fact, patients treated with antipsychotics get better despite tis-
sue loss.64,65 Clozapine, arguably the most effective intervention 
for schizophrenia, increases the progressive tissue loss despite 
clinical and functional improvement.66–68 Second, progressive 
tissue loss is not specific to psychosis or to any psychiatric syn-
drome or individual symptom. A large amount of the variance 
in structural changes is explained by a single p factor that cap-
tures the overall burden of psychopathology.69 Many brain re-
gions are altered by the majority of brain diseases, albeit to a 
variable extent.70,71 Third, most patients with psychosis display a 
pattern of cortical thickness that is indistinguishable from that of 
healthy controls,25,72,73 indicating that neuroprogression is an un-
likely mechanistic process operating in a large majority of func-
tionally disabled patients who need active interventions. If this 
is the case, reversing or arresting these brain changes may not 
bring the desired effects of early intervention.

The extant literature reviewed here indicates that putative 
neuroprogression is unlikely the primary pathophysiological 
process to be targeted for secondary prevention efforts in 
psychiatry. If we refrain from invoking the framework of a 
progressive pathophysiology, then the mechanistic basis for 
the onset (i.e., first episode) and later recurrences could be 
considered separable. In other words, the inefficient adaptive 
pathobiological processes that lead to recurrences (relapses or 
comorbidity) are likely distinguishable from the mechanisms 
triggering the onset.

Neuroadaptation as the mechanistic focus of 
early intervention

In many physiologic conditions, grey matter reduction confers 
an adaptive advantage (e.g., developmental cortical thin-
ning74,75 or pregnancy76). A higher rate of change of cortical 
thickness is associated with greater intelligence in healthy ado-
lescents,77 while pregnancy-associated grey matter reduction is 
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associated with improved maternal bonding.76 While such an 
assertion in pathological states may be iconoclastic, it is impor-
tant to recognize both benefits and costs of grey matter changes 
in psychiatric disorders before intervening to “protect” against 
them. Preclinical studies indicate that morphological changes 
induced by developmental adversity may indeed prime the 
organism for a more strategic response in the face of further 
adversity.78 In this context, the term “neuroprogression” for 
post-onset structural changes in psychiatric disorders stands 
out as an unfortunate misnomer. A more accurate description 
of these MRI-based grey matter changes would be “cortical 
reorganization” or “structural neuroadaptation.”79

Physiologic adaptation to perturbation is a feature of all com-
plex biological systems, including the human brain.80 While res-
toration of pre-perturbation parameters (healthy baseline) in 
patients is naturally the most desirable state, a chaotic response 
resulting in alternate states of stability is more likely with in-
tense, protracted perturbations81,82 (as in a psychotic episode). 
Such “exploratory” neuroadaptation may result in distributed, 
albeit small effect size changes in the brain structure and may 
continue until a new “steady state” is reached, which may be 
less than optimal82 (inefficient compensation or maladaptive 
steady state83). In the context of systems biology, psychiatric 
phenomena can be seen as emergent properties;84,85 their ap-
pearance as well as resolution cannot be fully solved by focus-
ing on the properties of single constituent markers, such as 
MRI-based brain structural changes. A deeper understanding 
of this exploratory adaptive response is a requisite step for de-
vising empirically informed secondary prevention strategies. In 
this case, intervention to modify illness trajectories would be 
different from the initial treatment and would focus on guiding 
more adaptive biological processes to emerge in an individual.

Investigating neuroadaptation in psychosis

The conventional approach in the field tends to view structural 
changes as a pathological outcome to be targeted for interven-
tion (i.e., neuroprogression). In contrast, the systems perspec-
tive82 acknowledges the inherently dynamic nature of brain 
structure, its interconnectedness with illness-related factors at 
various levels and the variations that may result from internal 
regulation to reduce the impact of external perturbations.86 In 
this view, MRI-based structural changes are likely nested 
within a system of physiologic changes occurring at the 
molecular, cellular, tissue or organ (i.e., whole brain) level as 
well as the bodily changes that occur elsewhere in the course of 
psychosis (e.g., cardiometabolic changes). In addition to this 
interconnected system of biological changes, causal interactions 
also occur outside the body, at the level of individual and col-
lective behaviour,87 affecting the brain structure. As with other 
systems concepts, investigations of neuroadaptation require 
multi-scale and multi-level measures that employ network 
theory. At the level of brain structure, investigations that parse 
the relationship between various spatial units and tissue types 
are needed (e.g., graphs of concomitant grey matter and white 
matter changes, relationship between grey matter reduction 
across different brain areas). These structural graphs depicting 
an observed state of interaction must then be studied in con-

junction with graphs capturing the emergent properties of 
interacting signals of brain function (e.g., co-occurring changes 
in functional activity and symptom-based, cognitive and be-
havioural networks88). Crucially, as neuroadaptation results 
from autoregulatory, self-organizing processes, they are likely 
not defined by discrete, observable events but occur gradually 
over time. Characterizing dynamic neuroadaptation processes 
will require multi-level, multimodal measurements to be re-
peatedly captured over time.

An implicit speculation that arises from the proposal here is 
that antipsychotics may assist the process of neuroadaptation. 
The evidence to date, in our view, supports the notion that 
post-onset thickness change (reduction and increase) may in-
deed be an adaptive process. There is also emerging evidence 
that antipsychotics contribute to thickness reduction. Neverthe-
less, there is no evidence to assume that the antipsychotic-
induced thickness reduction per se is therapeutically beneficial. 
In due course, the antipsychotic- versus illness-related thick-
ness changes may turn out to be distinct in their spatial distri-
bution across the brain, the underlying histological changes 
(e.g., increased intracortical myelination v. grey matter atro-
phy), the cellular constituents affected (e.g., glial v. neuronal 
changes), the time course (continuous or time-limited effects) as 
well as the potential reversibility. None of this information is 
presently known. Experimental “on–off” studies of anti
psychotics in selected patients with multiple within-subject 
observations and careful characterization of symptom and 
functional changes are required to parse these phenomena fur-
ther. Noninvasive experiments that induce short-term adaptive 
changes (e.g., sensory- or motor-deprivation paradigms89) may 
be feasible in both medicated and unmedicated patients. Such 
experiments will provide clarity on whether antipsychotics as-
sist or interfere with presumed adaptive processes. Until such 
evidence is available, antipsychotic-induced structural changes 
should be considered with caution.

There is a clear need for energetically promoting early inter-
vention in psychiatry. The psychosocial toxicity of untreated 
psychiatric illness is irrefutable; this forms the sufficient prem-
ise to vigorously promote early intervention. Treatment delay 
in psychiatric disorders occurs due to systemic factors such as 
chronic underinvestment in effective service delivery, societal 
factors pertaining to stigma, and personal health belief models. 
Addressing these issues remains the primary and urgent goal 
of secondary prevention in psychiatry. Early intervention pro-
vides substantial benefits at a program level,50 but our arsenal 
for providing effective, minimally invasive and acceptable 
early intervention for the patients with varying illness severity 
that we see at our clinics remains inadequate. Linking early 
intervention to deleterious neuroprogression is untenable at 
best, and may hamper the progress of further enquiry into 
mechanistically informed secondary prevention in psychiatry. 
It is time for the neuroscience of early intervention to take a de-
cisive turn away from the dark alley of neuroprogression.
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